Granular rheology 0 00 000 0

Validation 0000 Water-sediment simulations

Conclusions

The Role of Granular Mechanics and Porous Flow for Ice Sheet Behavior in a Changing Climate

Anders Damsgaard, Jenny Suckale, Liran Goren

https://adamsgaard.dk
gopher://adamsgaard.dk
anders@adamsgaard.dk

ESCO 2020: Climate MS, 2020-06-08

・ロト ・母ト ・ヨト ・ヨト ・ 日・

•**00** 00000000 Granular rheology

Validation

Water-sediment simulations

Conclusions

Rignot et al. 2011 Science

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Introduction	Granular rheology	Validation	Water-sediment simula
000 0000000	0 00 000 0	0000	000000

Conclusions

Subglacial sediment transport

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Granular rheology 0 00 000 Validation

Water-sediment simulations

Conclusions

Subglacial sediment transport

Clark et al. 2018 Earth Surf. Process. Landforms

<ロト < @ ト < E ト < E ト E の < @</p>

Introd	luction
muou	action

000 00000000 Granular rheology 0 00

Validation

Water-sediment simulations

Conclusions

Grounding-zone wedges

Anandakrishnan et al. 2007 Science

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Introd	uction
muou	uction

000

Granular rheology 0 00 000

Validation 0000 Water-sediment simulations

Conclusions

Palaeo-grounding zone wedges

Bart et al. 2017 Scientific Reports

・ロト ・母ト ・ヨト ・ヨー ・つへで

000

Granular rheology

Validation

Water-sediment simulations

Conclusions

Palaeo-grounding zone wedges

Bart et al. 2017 Scientific Reports

▲□ > ▲ □ > ▲ 三 > ▲ 三 > ● ▲ ○ > ● ● ●

000

Granular rheology

Validation 0000 Water-sediment simulations

Conclusions

Palaeo-grounding zone wedges

Bart et al. 2017 Scientific Reports

Introd	uction

000

Granular rheology 0 00 000 Validation 0000 Water-sediment simulations

Conclusions

Palaeo-grounding zone wedges

Dowdeswell et al. 2020 Science

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

000

Granular rheology 0 00 000 000 Validation

Water-sediment simulations

Conclusions

Ice-stream stabilization

Alley et al. 2007 Science

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● のへで

Intro	duc	tion
	auc	

000 000000000 Granular rheology 0 00 000

Validation

Water-sediment simulations

Conclusions

Subglacial sediment transport

500

Introduction	Granular rheology	Validation	Water-sediment simulations	Conclusion
000 0000000	0 000 000	0000	0000000	00
	0.0.0			

No model for till transport ↓ No physically-based modeling

Introduction	Granular rheology	Validation	Water-sediment simulations	Conclusions
000	•	0000	0000000	00
0000000	00			
	000			
	0			

Granular modeling

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Granular rheology ○ ●○

000

Validation 0000 Water-sediment simulations

Conclusions

Particle-scale modeling: Discrete-element method

Damsgaard et al. 2013 J. Geophys. Res.

Damsgaard et al. 2016 Geophys. Res. Lett.

Normal stress σ_0 on wall with fixed p_t^{top} Fixed $v_{p,top}^x$ Static, impermeable wall Damsgaard et al. 2015 The Crvosphere

Granular rheology ○ ○●

Validation 0000 Water-sediment simulations

Conclusions

Particle-scale modeling: Discrete-element method

sphere

git://adamsgaard.dk/sphere C++, Nvidia C, cmake, Python, Paraview massively parallel, GPGPU detailed physics and fluid-grain coupling 20,191 LOC

3 months on nvidia tesla k40

Damsgaard et al. 2015 The Cryosphere

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

Introduction	Granular rheology	Validation	Water-sediment simulations	Conclusions
000	0	0000	0000000	00
00000000	00			
	000			
	000			

Continuum modeling of granular mechanics

Granular rheology

Validation 0000 Water-sediment simulations

Conclusions

Phase transitions in granular materials

Houssais et al. 2015 Nat. Comm.

Granular rheology

Validation

Water-sediment simulations

Conclusions

Mohr Coulomb

Iverson 2010 J. Glaciol.

Charles-Augustin de Coulomb, b. 1736

Christian Otto Mohr, b. 1835

Karl von Terzaghi, b. 1883

▲ロト ▲理ト ▲ヨト ▲ヨト ヨー のへで

Granular rheology

Validation 0000 Water-sediment simulations

Conclusions

Local rheology for dense granular flows: $\mu(I)$, $\Phi(I)$

$$I = \frac{\dot{\gamma}d}{\sqrt{N/\rho}}$$

000

Jop et al. 2005 J. Fluid Mech.:

$$au = \mu(I)N$$

$$\mu(I) = \mu_{\rm s} + \frac{\mu_2 - \mu_{\rm s}}{I_0/I + 1}$$

Pouliquen et al. 2006 J. Stat. Mech .:

$$\Phi(I) = \Phi_{\max} - (\Phi_{\max} - \Phi_{\min})I$$

・ロト ・母ト ・ヨト ・ヨト ・ ヨー ・ つへで

Granular rheology

Validation

Water-sediment simulations

Conclusions

590

Non-local granular fluidity rheology

 $\dot{\gamma}=g(\mu,N)\mu$

$$g_{\mathsf{local}}(\mu, N) = egin{cases} \sqrt{d^2 N /
ho_{\mathsf{s}}}(\mu - \mu_{\mathsf{s}}) / (b\mu) & ext{if } \mu > \mu_{\mathsf{s}} \\ 0 & ext{if } \mu \leq \mu_{\mathsf{s}} \end{cases}$$

$$abla^2 g = rac{1}{\xi^2(\mu)}(g-g_{\mathsf{local}})$$

$$\xi(\mu) = \frac{Ad}{\sqrt{|\mu - \mu_{\mathsf{s}}|}}$$

Henann and Kamrin 2013 PNAS

Granular rheology 0 00

ŏeo

Validation 0000 Water-sediment simulations

Conclusions

CNGF-PF: Cohesive NGF w. pore fluid

$$\sigma_{\rm n}' = \sigma_{\rm n} - p_{\rm f}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = ∽ へ ⊙ >

Granular rheology

Validation 0000 Water-sediment simulations

Conclusions

Model setup

Damsgaard et al. In review

Introduction	Granular rheology	Validation	Water-sediment simulations	Conclusions
000	0	0000	0000000	00
0000000	00			
	000			
	0			
	000			

Validation

<ロ> <0</p>

Granular rheology 0 00 000 000 Validation

Water-sediment simulations

Conclusions

Mohr Coulomb

Damsgaard et al. In review

<ロト < 団ト < 三ト < 三ト < 三 ・ つへで</p>

Granular rheology

Validation ○○●○ Water-sediment simulations

Conclusions

Strain distribution

Damsgaard et al. In review

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Granular rheology 0 00 000 Validation 000● Water-sediment simulations

Conclusions

Granular modeling: Discrete-element method vs. continuum model

sphere

git://adamsgaard.dk/sphere C++, Nvidia C, cmake, Python, Paraview massively parallel, GPGPU detailed physics and fluid-grain coupling 20,191 LOC

3 months on nvidia tesla k40

1d-fd-simple-shear

git://adamsgaard.dk/1d_fd_simple_shear C99, makefiles, gnuplot single threaded simple physics, simple fluid-grain coupling 2,348 LOC 70 ms on 2012 laptop

Introduction	Granular rheology	Validation	Water-sediment simulations	Conclusions
000	0	0000	000000	00
0000000	000			
	0			

Water-sediment simulations

Granular rheology 0 00 000

Validation

Water-sediment simulations

Conclusions

Damsgaard et al. In review

Granular rheology 0 00 000

Validation 0000 Water-sediment simulations

Conclusions

Water-sediment simulations

Granular rheology 0 00 000 0 0 000

Validation 0000 Water-sediment simulations

Conclusions

Deep or shallow deformation?

$$d_{
m s} = \sqrt{rac{k}{\phi \eta_{
m f} \beta_{
m f} \pi f}}$$

Damsgaard et al. In review

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Granular rheology 0 00 000 0 0 000

Validation

Water-sediment simulations

Conclusions

Deep or shallow deformation?

Damsgaard et al. In review

Granular rheology 0 00 000 0 Validation

Water-sediment simulations

Conclusions

Deep or shallow deformation?

Maximum deformation depth: z'

$$0 = \sqrt{2}\sin\left(\frac{7\pi}{4} - \frac{z'}{d_{\rm s}}\right) + \frac{(\rho_{\rm s} - \rho_{\rm f})Gd_{\rm s}}{A_{\rm f}}\exp\left(\frac{z'}{d_{\rm s}}\right)$$

Damsgaard et al. In review

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Granular rheology 0 00 000

Validation

Water-sediment simulations

Conclusions

Water-sediment simulations

Granular rheology

Validation 0000 Water-sediment simulations

Conclusions

Next steps: Ice-water-sediment coupling

◆ロ > ◆母 > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

ntroduction	
000	
0000000	

Granular rheology

Validation 0000 Water-sediment simulations

Conclusions ●○

Conclusions

- First-principles granular rheologies promising for coupled simulations
- Rheology consistent with critical-state sediment mechanics and laboratory experiments
- Computationally lightweight compared to particle-based methods
- Towards testable field predictions of subglacial deformation and glacier dynamics

Introduction 000 0000000	Granular rheology o oo ooo	Validation 0000	Water-sediment simulations	Conclusions ⊙●
	000			

Resources

Slides:

https://adamsgaard.dk/npub/esco2020-damsgaard.pdf

Source code:

https://src.adamsgaard.dk/1d_fd_simple_shear

Preprint: "Evolving basal slip under glaciers and ice streams" https://arxiv.org/abs/2002.02436